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Abstract The construction of new four-step Runge–Kutta type method of sixth alge-
braic order with vanished phase-lag and its first, second and third derivatives is pre-
sented in this paper. We present a comparative error and stability analysis for the
produced new method. In order to test the efficiency of the obtained method, an appli-
cation to the resonance problem of the Schrödinger equation is described.
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1 Introduction

An investigation of the approximate solution of the radial time independent
Schrödinger equation is presented in this paper.
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The radial time independent Schrödinger equation can written as a boundary value
problem with the following form:

q ′′(r) =
[
l(l + 1)/r2 + V (r) − k2

]
q(r). (1)

There are many research areas, within the applied sciences, for which the mathematical
models of their problems can be written with the above mentioned boundary value
problem. Some research areas are:

1. astronomy,
2. astrophysics,
3. quantum mechanics,
4. quantum chemistry,
5. celestial mechanics,
6. electronics
7. physical chemistry
8. chemical physics etc

(see for example [1–4])
We mention the following definitions for the above model (1) :

– The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

– The quantity k2 is a real number denoting the energy,
– The quantity l is a given integer representing the angular momentum,
– V is a given function which denotes the potential.

The boundary conditions are:

q(0) = 0 (2)

and a second boundary condition, for large values of r , determined by physical con-
siderations.

The subject of this paper is the investigation of a two-stage four-step Runge–Kutta
type (hybrid) sixth algebraic order method. We investigate how the the vanishing of
the phase-lag and its first, second and third derivatives affects the efficiency of the
obtained numerical scheme.

We mention that the the above procedure produces methods that are very effective
on any problem with:

1. periodic or
2. oscillating solutions or
2. solution which contains the functions cos and sin or
4. solution that is a combination of the functions cos and sin.

In more details, in this paper we will define the coefficients of the proposed Runge–
Kutta type (hybrid) two-stage four-step method in order to have:

1. the highest possible algebraic order
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2. the phase-lag vanished
3. the first derivative of the phase-lag vanished as well
4. the second derivative of the phase-lag vanished as well
5. the third derivative of the phase-lag vanished as well

The computation of the phase-lag and its first, second and third derivatives will be
done via the direct formula for the determination of the phase-lag for a 2 m-method
(see [23] and [26]).

We will also study the effectiveness of the new obtained scheme via

1. the investigation of the local truncation error of the new produced method and
other methods of the same form (comparative error analysis),

2. the investigation of the stability analysis of the new produced method and
3. the application of the new obtained method to the resonance problem of the one-

dimensional time independent Schrödinger equation. This is one of the most dif-
ficult problems arising from the one-dimensional Schrödinger equation.

The format of the paper is given below:

– A bibliography relevant on the subject is presented in Sect. 2.
– The phase-lag analysis of symmetric 2k-methods is presented in Sect. 3.
– In Sect. 4, we obtain the new hybrid two-stage four-step method.
– The comparative error analysis is presented in Sect. 5.
– In Sect. 6, the stability properties of the new produced method are investigated.
– In Sect. 7, the numerical results are presented.
– Finally, in Sect. 8, remarks and conclusions are mentioned.

2 Bibliography relevant on the subject of the paper

The last decades much research has been done on the development of computationally
efficient and reliable algorithms for the numerical solution of the one-dimensional
Schrödinger equation and related problems (see for example [5–93]). In the following,
we mention some bibliography:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [5–9].

– In [10–15] exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [20–41].

– Symplectic integrators are investigated in [42–67].
– Exponentially and trigonometrically multistep methods have been produced in

[68–87].
– Nonlinear methods have been studied in [34] and [88]
– Review papers have been presented in [89–93]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [94–98])
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3 Theory on the analysis of phase-lag of symmetric multistep methods

Let us consider the approximate solution of the initial value problem

p′′ = f (x, p), (3)

For the above solution let us also consider a multistep method with m steps which
can be used over the equally spaced intervals {xi }m

i=0 ∈ [a, b] and h = |xi+1 − xi |,
i = 0(1)m − 1.

We consider also the case in which the method is symmetric, i.e. the case:

ai = am−i , bi = bm−i , i = 0(1)
m

2
. (4)

Applying a symmetric 2m-step method, that is for i = −m(1)m, to the scalar test
equation

p′′ = −w2 p (5)

a difference equation of the form

Am(v) qn+m +· · ·+ A1(v) qn+1+ A0(v) qn + A1(v) qn−1+· · ·+ Am(v) qn−m = 0 (6)

is obtained, where v = w h, h is the step length and A0(v), A1(v), . . ., Am(v) are
polynomials of v = w h.

We call characteristic equation (which is associated with (6)) the equation given
by:

Am(v) λm + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Am(v) λ−m = 0 (7)

Theorem 1 [23] and [26] The symmetric 2m-step method with characteristic equation
given by (7) has phase-lag order q and phase-lag constant c given by:

−c vq+2+O
(
vq+4)= 2 Am (v) cos (m v)+· · ·+2 A j (v) cos ( j v)+· · ·+ A0 (v)

2 m2 Am (v)+· · ·+2 j2 A j (v)+· · ·+2 A1 (v)
(8)

Remark 1 The formula (8) is a direct method for the calculation of the phase-lag of
any symmetric 2m-step method.

4 Development of the new method

We consider the family of Runge–Kutta type symmetric four-step methods for the
approximate solution of problems of the form p′′ = f (x, p) :

p̂n+2 = 2 pn+1 − 2 pn + 2 pn−1 − pn−2 + h2

6

(
7 fn+1 − 2 fn + 7 yn−1

)
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pn+2 − 2 pn+1 + a2 pn − 2 pn−1 + pn−2

= h2
[

b0

(
f̂n+2 + fn−2

)
+ b1 ( fn+1 + fn−1) + b2 fn

]
(9)

Notations for the above mentioned general family of methods :

– the coefficient a2, b0, b1, b2 are free parameters,
– h is the step size of the integration ,
– n is the number of steps,
– qn is the approximation of the solution on the point xn

– fn = f (xn, qn)

– xn = x0 + n h and
– x0 is the initial value point.

If we apply the above mentioned family of methods (9) to the scalar test Eq. (5)
will lead to the difference Eq. (6) with m = 2 and A j (v) , j = 0, 1, 2 given by:

A2 (v) = 1, A1 (v) = −2 + v2
(

b0

(
2 − 7

6
v2

)
+ b1

)

A0 (v) = a2 − 2 b0v
2 + 1

3
v4b0 + v2b2 (10)

Requiring the above method to have the phase-lag and its first, second and third
derivatives vanished the following system of equations is obtained (using the formulae
(8) (for m = 2) and (10)):

Phase-Lag = − T0

−12 − 12 b0v2 + 7 v4b0 − 6 v2b1
= 0 (11)

where

T0 = 12 (cos (v))2 − 6 − 12 cos (v) + 12 cos (v) b0v
2

−7 cos (v) v4 b0 + 6 cos (v) v2 b1 + 3 a2 − 6 b0v
2 + v4 b0 + 3 v2 b2

First Derivative of the Phase-Lag = T1(−12−12 b0v2+7 v4b0−6 v2b1
)2 =0 (12)

where

T1 = −144 sin (v) b0v
4 b1 + 84 sin (v) v6 b0 b1

−288 cos (v) sin (v) b0v
2 + 168 cos (v) sin (v) v4 b0

−144 cos (v) sin (v) v2 b1 + 144 sin (v) − 288 cos (v) sin (v)

+288 cos (v) v b1 − 672 cos (v) v3 b0 + 576 cos (v) b0 v

+168 sin (v) b0
2v6 − 49 sin (v) v8 b0

2 − 144 sin (v) b0
2 v4
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+336 (cos (v))2 b0v
3 − 288 v (cos (v))2 b0

+84 a2 b0 v3 − 144 v (cos (v))2 b1 − 36 v a2 b1 − 72 v a2 b0

+42 v5 b2 b0 + 12 v5 b0 b1 − 36 sin (v) v4 b1
2 − 120 v3 b0 + 72 v b2

+72 v b1 − 60 b0
2 v5

Second Derivative of the Phase-Lag= T2(−12−12 b0v2+7 v4 b0−6 v2 b1
)3 =0

(13)

where

T2 = −3456 − 16128 sin (v) b0v
3 − 2592 v2 (cos (v))2 b1

2

+3456 (cos (v))2 b0+24192 cos (v) sin (v) b0
2v5−9408 cos (v) sin (v) b0

2v7

−10368 (cos (v))2 b0
2v2 − 3024 cos (v) b0

3v8 + 1728 cos (v) b0
3v6

+432 cos (v) v4 b1
2 + 13824 sin (v) b0

2v3

+1764 cos (v) b0
3v10 − 24192 sin (v) b0

2v5

+9408 sin (v) v7 b0
2 − 343 cos (v) v12 b0

3

+216 cos (v) v6 b1
3 + 3456 sin (v) v3 b1

2

+6912 (cos (v))2 v2 b1 + 25056 (cos (v))2 b0
2v4 − 19824 (cos (v))2 v6 b0

2

+2352 (cos (v))2 v8 b0
2 + 1728 (cos (v))2 v4 b1

2 − 864 b1 + 4536 a2 b0
2v4

−2592 a2 b0
2v2 + 5184 cos (v) v2 b1

2 + 20736 cos (v) b0
2v2

−34560 cos (v) b0
2v4 + 216 v6 b0

2 b1 − 252 b0
2v8 b1 − 648 v2a2 b1

2

−2940 v6a2 b0
2 − 252 b2v

6 b0 b1 − 2592 a2 b0v
2 b1

−882 b2v
8 b0

2 − 72 b0v
6 b1

2 − 504 b2v
6 b0

2 − 3024 a2 b0v
2

+6912 sin (v) v b1 + 2016 v6 b0 b1 + 13824 sin (v) b0v + 1260 v8 b0
3

+720 v6 b0
3 + 1728 (cos (v))2 b1 − 3456 cos (v) b1

−3456 cos (v) sin (v) b1
2v3 − 6912 v cos (v) sin (v) b1

−13824 cos (v) sin (v) b0
2v3 + 16128 cos (v) sin (v) b0v

3

−13824 v cos (v) sin (v) b0+20736 cos (v) b0v
2 b1−16416 cos (v) v4 b0 b1

+1296 cos (v) b0v
6 b1

2 + 13824 sin (v) b0v
3 b1 + 2268 v4a2 b0 b1

−1008 cos (v) v6 b0 b1 + 2592 cos (v) b0
2v6 b1 − 3024 cos (v) b0

2v8 b1

+882 cos (v) v10 b0
2 b1 − 756 cos (v) v8 b0 b1

2 − 12096 sin (v) v5 b0 b1

+15984 (cos (v))2 v4 b0 b1 − 4032 (cos (v))2 v6 b0 b1

−10368 (cos (v))2 b0v
2 b1 − 6048 v4 b2 b0 + 2592 v2 b2 b0

−8424 v4 b0 b1 + 2592 b0v
2 b1 + 1296 v2 b2 b1 + 1296 v2 b1

2

+864 a2 b0 + 432 a2 b1 − 1296 b0
2v4 + 8232 v6 b0

2 − 6912 cos (v) b0

−864 v4 b1
2 − 1176 v8 b0

2 − 2592 b0v
2 + 4032 v4 b0 − 3456 v2 b1

+588 cos (v) b0
2v8 + 21504 cos (v) b0

2v6 − 8064 (cos (v))2 v4 b0
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+1728 (cos (v))2 b0v
2 + 1008 cos (v) v4 b0

+22464 cos (v) b0v
2 − 864 cos (v) v2 b1

−13824 cos (v) sin (v) b0v
3 b1 + 12096 cos (v) sin (v) b0v

5 b1 − 864 b2

−1728 cos (v) + 6912 (cos (v))2

Third Derivative of the Phase-Lag=− T3(−12−12 b0v2+7 v4 b0−6 v2 b1
)4 =0

(14)

where

T3 = 919296 cos (v) sin (v) v6 b0
2 − 169344 cos (v) sin (v) b0

2v8

−787968 cos (v) sin (v) b0
2v4 − 1244160 cos (v) b0v

3 b1

−435456 cos (v) v5 b0 b1 + 829440 cos (v) b0v − 290304 cos (v) v3 b0

+124416 cos (v) v b1 − 248832 cos (v) sin (v) b0

−24192 sin (v) b0v
4 − 124416 v3 b2 b0

2 + 124416 cos (v) v3 b1
2

−2985984 cos (v) b0
2v3 + 2515968 cos (v) b0

2v5 + 338688 cos (v) v7 b0
2

−124416 b0
2v3 b1 − 31104 v3 b2 b1

2 − 124416 b0v
3 b1

2

+290304 v5 b2 b0
2 + 331776 b0v

5 b1
2 + 663552 b0

2v5 b1

+62208 v b2 b1 + 124416 v b2 b0 − 423360 v7 b2 b0
2 + 124416 b0v b1

−93312 sin (v) v4 b1
3 + 254016 v7a2 b0

3 − 123480 v9a2 b0
3

−362880 v3 b2 b0 − 883008 b0
2v7 b1 − 20736 cos (v) sin (v) v6 b1

3

−1907712 cos (v) sin (v) v6 b0
3 + 1899072 cos (v) sin (v) v8 b0

3

−663264 cos (v) sin (v) b0
3v10

−21168 sin (v) v10 b0
2 b1+18144 sin (v) v8 b0 b1

2+72576 sin (v) b0
3v10 b1

−41472 sin (v) b0
3v8 b1−10368 sin (v) b0v

8 b1
3+36288 sin (v) b0

2v10 b1
2

−42336 sin (v) b0
3v12 b1 + 870912 (cos (v))2 v5 b0 b1

−124416 (cos (v))2 b0v
3 b1 + 290304 (cos (v))2 b1

2v7 b0

−423360 (cos (v))2 b1v
9 b0

2 − 663552 (cos (v))2 b0v
5 b1

2

+497664 cos (v) sin (v) b0
2v2+20736 sin (v) v2 b1−338688 sin (v) b0

2v6

+124416 cos (v) sin (v) b1
2v2+290304 sin (v) b0

2v4

+580608 (cos (v))2 b0v
3 − 248832 v (cos (v))2 b1

−787968 v (cos (v))2 b0 − 72576 v a2 b0

−435456 v5 b0 b1 + 82944 b0v
3 b1 − 995328 cos (v) b0

3v3

+2571264 cos (v) b0
3v5 + 373248 cos (v) sin (v) b0v

2

+290304 cos (v) sin (v) v4 b0

−248832 cos (v) sin (v) v2 b1+145152 sin (v) b0v
4 b1−829440 sin (v) b0v

2
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−31104 sin (v) b0
2v8 b1

2 − 124416 cos (v) v3 b1
3 + 145152 v5 b2 b1 b0

−124416 v3 b2 b0 b1 − 145152 b1
2v7 b0

+211680 b1v
9 b0

2 − 1536192 sin (v) b0
3v8 + 451584 sin (v) b0

3v10

+8232 sin (v) b0
3v12 − 1658880 (cos (v))2 b0

3v5

+995328 cos (v) b0
2v − 497664 sin (v) b0

2v2

+1411200 cos (v) b0
3v9+197568 (cos (v))2 b0

3v11−2612736 cos (v) b0
3v7

+31104 b1
3v5 − 98784 b0

3v11 + 32928 cos (v) sin (v) v12 b0
3

−124416 cos (v) sin (v) v4 b1
2 + 211680 cos (v) v9 b0

2 b1

−145152 cos (v) v7 b0 b1
2 + 6048 sin (v) v10 b0 b1

3

−10584 sin (v) v12 b0
2 b1

2 + 8232 sin (v) v14 b0
3 b1

+1669248 (cos (v))2 b0
2v7 b1 − 1907712 (cos (v))2 b0

2v5 b1

+746496 cos (v) sin (v) b0
3v4 + 93312 v4 cos (v) sin (v) b1

3

+373248 v3 (cos (v))2 b0 b1
2

+746496 v3 (cos (v))2 b0
2 b1 − 497664 v (cos (v))2 b0 b1

−746496 cos (v) v3 b1
2 b0 − 290304 v5a2 b0

3 + 15552 v3a2 b1
3

+1700352 sin (v) b0
3v6 − 746496 sin (v) b0

3v4 + 248832 cos (v) v b1
2

−124416 sin (v) v2 b1
2−1596672 cos (v) b0

2v7 b1+767232 cos (v) b0v
5 b1

2

−1119744 sin (v) b0
2v4 b1 − 1492992 cos (v) b0

2v3 b1

−559872 sin (v) v4 b1
2 b0 − 124416 va2 b0 b1

−21168 b2 b1v
9 b0

2 + 20736 sin (v)

+746496 v3 (cos (v))2 b0
2 + 217728 a2 b0v

3 b1 − 290304 v5a2 b0
2 b1

+127008 v7a2 b0
2 b1 − 72576 v5a2 b0 b1

2 + 186624 v3a2 b0
2 b1

+93312 v3a2 b0 b1
2 − 42336 b2 b0

3v9 − 24696 v11 b2 b0
3

+124416 v3a2 b0
3 − 7056 b0

3v11 b1 − 6048 b0
2v9 b1

2

−31104 va2 b1
2 − 124416 va2 b0

2 − 677376 (cos (v))2 b0
2v7

+48384 (cos (v))2 b0
2v5+497664 v3 (cos (v))2 b0

3−124416 v (cos (v))2 b1
2

−497664 v (cos (v))2 b0
2 − 124416 cos (v) sin (v) b1 − 42336 sin (v) b0

4v12

−2401 sin (v) v16 b0
4 − 98784 cos (v) v11 b0

3

−1296 sin (v) v8 b1
4 + 31104 cos (v) v5 b1

3

−248832 v3 (cos (v))2 b1
2 + 62208 v3 (cos (v))2 b1

3 − 338688 b0
3v7

+599760 b0
3v9 + 248832 b0

3v5 + 62208 v b1
2 + 124416 v3 b1

2

+35280 b0
4v11 − 290304 v3 b0 + 124416 v b1 − 31104 v3 b1

3 + 60480 b0
4v9

+124416 sin (v) b1 + 393984 b0
2v3 − 266112 b0

2v5 + 338688 v7 b0
2

+352512 b0v − 165888 cos (v) sin (v) + 248832 sin (v) b0 + 18144 b0
3v9 b1

+1119744 cos (v) sin (v) b0
2v4 b1 + 559872 cos (v) sin (v) b0v

4 b1
2

−559872 cos (v) sin (v) b0v
6 b1

2 + 290304 cos (v) sin (v) v6 b0 b1

+1094688 cos (v) sin (v) b0
2v8 b1 − 84672 cos (v) sin (v) v10 b0

2 b1
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+72576 cos (v) sin (v) v8 b0 b1
2 − 1990656 cos (v) sin (v) v6 b0

2 b1

−642816 cos (v) sin (v) b0v
4 b1 + 497664 cos (v) sin (v) b0v

2 b1

−497664 sin (v) b0v
2 b1 + 995328 cos (v) b0v b1

+1679616 sin (v) b0
2v6 b1 − 731808 sin (v) b0

2v8 b1

+404352 sin (v) b0v
6 b1

2 + 2695680 cos (v) b0
2v5 b1 − 423360 v5a2 b0

2

+435456 v3a2 b0
2 + 2177280 (cos (v))2 b0

3v7 − 1340640 (cos (v))2 b0
3v9

−62208 (cos (v))2 b1
3v5 − 5184 sin (v) v6 b1

3 + 16464 sin (v) b0
4v14

−20736 sin (v) b0
4v8 + 48384 sin (v) b0

4v10

The solution of the above system of Eqs. (11)–(14) gives the following coefficients
of the new obtained method:

a2 = T4

D0
, b0 = T5

D1
, b1 = T6

v3 D0
, b2 = T7

v3 D0
(15)

where:

T4 = 432 + 3060 cos (v) v2 − 3756 v sin (v)

−394 cos (v) v4 + 3788 v3 sin (v) − 98 sin (v) v5

+252 cos (5 v) + 144 cos (2 v) − 4752 v2 + 3216 v2 cos (2 v)

−785 v3 sin (3 v) − 1292 v3 sin (2 v) + 24 v4 cos (2 v)

+2073 v sin (3 v) − 172 v4 cos (3 v) − 2472 v sin (2 v)

+16 v5 sin (2 v) + 96 v2 cos (4 v) + 7 v5 sin (5 v)

−91 v5 sin (3 v) + 35 v3 sin (5 v) − 147 v sin (5 v)

+10 v4 cos (4 v) + 14 v4 cos (5 v) + 189 v2 cos (5 v)

+516 v sin (4 v) + 70 v3 sin (4 v) + 4 v5 sin (4 v)

−2385 v2 cos (3 v) − 144 cos (v) + 62 v4 − 576 cos (4 v)

−108 cos (3 v)

T5 = −150 cos (v) v2 + 6 v2 cos (3 v) + 36 cos (v)

−36 cos (3 v) + 60 v2 − 12 v3 sin (3 v) − 36 v3 sin (v)

−36 + 36 cos (2 v) − 36 v sin (3 v) + 108 v sin (v) + 12 v2 cos (2 v)

T6 = 1368 v − 3636 v3 + 497 v5 − 308 cos (v) v5 + 972 cos (v) v3

−720 cos (v) v + 2916 sin (v) v2 − 588 v3 cos (4 v)

−804 sin (v) v4 − 648 sin (v) + 252 v5 cos (2 v)

−360 v cos (4 v) − 108 v2 sin (3 v) + 56 v6 sin (2 v)

−132 v4 sin (3 v) − 77 v5 cos (4 v) + 2208 v3 cos (2 v)

−1008 v cos (2 v) − 2064 v2 sin (2 v) + 432 sin (2 v)

−120 v2 sin (4 v) + 720 v cos (3 v) − 28 v5 cos (3 v)
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+180 v3 cos (3 v) + 67 v4 sin (4 v) + 490 v4 sin (2 v)

+14 v6 sin (4 v) − 216 sin (4 v) + 216 sin (3 v)

T7 = −72 v + 3372 v3 − 148 v5 − 168 v2 sin (5 v) − 28 v4 sin (5 v)

−7 v6 sin (5 v) + 504 v cos (5 v) + 84 v3 cos (5 v)

−38 cos (v) v5 + 648 cos (v) v3 − 1080 cos (v) v

+21 v5 cos (5 v) + 1344 sin (v) v2 + 98 v6 sin (v)

+228 v3 cos (4 v) − 3988 sin (v) v4 + 648 sin (v)

−48 v5 cos (2 v) − 792 v cos (4 v) + 1464 v2 sin (3 v)

−32 v6 sin (2 v) + 832 v4 sin (3 v) + 4 v5 cos (4 v)

−4752 v3 cos (2 v) + 864 v cos (2 v) − 1944 v2 sin (2 v)

+91 v6 sin (3 v) − 432 sin (2 v) + 540 v2 sin (4 v)

+576 v cos (3 v) + 113 v5 cos (3 v) + 1860 v3 cos (3 v)

−108 v4 sin (4 v) + 1128 v4 sin (2 v) − 8 v6 sin (4 v)

+216 sin (4 v) − 216 sin (3 v)

D0 = −72 − 7 v4 cos (3 v) − 77 cos (v) v4 − 77 v3 sin (3 v)

+315 v2 cos (3 v) − 252 cos (3 v) + 48 v sin (2 v)

−8 v3 sin (2 v) + 525 v sin (3 v) + 48 v2 cos (2 v)

+72 cos (2 v) − 245 v3 sin (v) − 651 cos (v) v2

−2247 v sin (v) + 252 cos (v)

D1 = 56 v5 sin (2 v) − 84 v3 sin (2 v) − 24 cos (v) v4

+35 v6 + 7 v6 cos (2 v) + 8 sin (v) v5 + 315 v4

−147 v4 cos (2 v) + 24 v3 sin (v)

For some values of |w| the formulae given by (15) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

a2 = 2 + 751

302400
v8 − 1529

9072000
v10

+ 1414837

125737920000
v12 − 70831729

49037788800000
v14

− 91935504629

494300911104000000
v16 − 1035153325523

42015577443840000000
v18 + · · ·

b0 = 3

40
− 751

75600
v2 + 337

1134000
v4

+ 271429

15717240000
v6 + 874647199

196151155200000
v8

+ 8713539283

15446903472000000
v10 + 1889753409197

42015577443840000000
v12
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− 151273220882233

8298286623045619200000000
v14− 468310743464104367

612796550624907264000000000
v16

− 242345394064151266772269

1500622321135779157155840000000000
v18+· · ·

b1 = 13

15
+ 751

18900
v2− 5213

324000
v4

− 269117

1964655000
v6− 30404441

1114495200000
v8

+ 11251277021

2808527904000000
v10+ 25084215673501

21007788721920000000
v12

+ 1545501689550498247

8298286623045619200000000
v14+ 598699993342795769

31118574836421072000000000
v16

+ 346906566024642329500999

375155580283944789288960000000000
v18+· · ·

Fig. 1 Behavior of the coefficients of the new proposed method given by (15) for several values of v = wh
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b2 = 7

60
− 751

12600
v2+ 11939

378000
v4

− 25394981

2619540000
v6+ 1634664971

3632428800000
v8

− 188369586949

5148967824000000
v10+ 52861588469201

21007788721920000000
v12

+ 152908220668984553

345761942626900800000000
v14+ 13428514059556330367

189675122812471296000000000
v16

+ 1778227282943503278672491

250103720189296526192640000000000
v18+· · · (16)

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method (mentioned as Opt Meth)

is given by:

LT EOpt Meth = 751 h8

302400

(
p(8)

n +4 w2 p(6)
n +6 w4 p(4)

n +4 w6 p(2)
n +w8 pn+

)
+O

(
h10

)
(17)

5 Comparative error analysis

We will investigate the following methods:

5.1 Classical method (i.e. the method (9) with constant coefficients)

LT EC L = − 751 h8

302400
p(8)

n + O
(

h10
)

(18)

5.2 The method with vanished phase-lag and its first and second derivatives
developed in [39]

LT EMeth I =− 751 h8

302400

(
p(8)

n +3 w2 p(6)
n +3 w4 p(4)

n +w6 p(2)
n

)
+O

(
h10

)
(19)

5.3 The new proposed method with vanished phase-lag and its first, second and third
derivatives developed in Section 4

LT EMeth I I = 751 h8

302400

(
p(8)

n +4 w2 p(6)
n +6 w4 p(4)

n +4 w6 p(2)
n +w8 pn+

)
+ O

(
h10

)

(20)
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Fig. 2 Flowchart for the error
analysis

The error analysis is based on Flowchart mentioned in the Fig. 2.
Using the procedure mentioned above and the formulae:

p(2)
n = (V (x) − Vc + G) p(x)

p(4)
n =

(
d2

dx2 V (x)

)
p(x) + 2

(
d

dx
V (x)

) (
d

dx
p(x)

)

+ (V (x) − Vc + G)

(
d2

dx2 p(x)

)

p(6)
n =

(
d4

dx4 V (x)

)
p(x) + 4

(
d3

dx3 V (x)

) (
d

dx
p(x)

)

+3

(
d2

dx2 V (x)

) (
d2

dx2 p(x)

)
+ 4

(
d

dx
V (x)

)2

p(x)

+6 (V (x) − Vc + G)

(
d

dx
V (x)

) (
d

dx
p(x)

)

+4 (V (x) − Vc + G) p(x)

(
d2

dx2 V (x)

)
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Fig. 3 Flowchart for the
stability analysis

+ (V (x) − Vc + G)2
(

d2

dx2 p(x)

)

. . .

p(8)
n =

(
d6

dx6 g (x)

)
p (x) + 6

(
d5

dx5
g (x)

)
d

dx
p (x)

+16 (g (x) + G) p (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
p (x)

d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
p (x)

)
d3

dx3 g (x)

+15

(
d2

dx2 g (x)

)2

p (x) + 48

(
d

dx
g (x)

) (
d

dx
p (x)

)

d2

dx2 g (x) + 22 (g (x) + G)2 p (x)
d2

dx2 g (x)

+28 (g (x) + G) p (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2

(
d

dx
p (x)

)
d

dx
g (x) + (g (x) + G)4 p (x)

(21)

we obtain the expressions of the Local Truncation Errors. For the methods mentioned
above the expression can be found in the “Appendix”.
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In order to study the Local Truncation Errors we examine two cases in terms of the
value of E :

– The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

– G � 0 or G � 0. Then |G| is a large number.

Based on the analysis presented above, we have the following asymptotic expan-
sions of the Local Truncation Errors:

5.4 Classical method

LT EC L = h8
(

751

302400
p (x) G4 + · · ·

)
+ O

(
h10

)
(22)

5.5 The method with vanished phase-lag and its first and second derivatives
developed in [39]

LT EMeth I = h8
[(

751

75600

(
d2

dx2 g (x)

)
p (x)

)
G2 + · · ·

]
+ O

(
h10

)
(23)

5.6 The new proposed method with vanished phase-lag and its first, second and third
derivatives developed in Section 4

LT EMeth I I = h8
[(

751

25200

(
d4

dx4 g (x)

)
p (x)+ 751

37800

(
d3

dx3 g (x)

)
d

dx
p (x)

+ 751

18900
g (x) p (x)

d2

dx2 g (x)+ 751

25200

(
d

dx
g (x)

)2
p (x)

)
G+· · ·

]
+O

(
h10

)

(24)

From the above equations we have the following theorem:

Theorem 2 For the Classical Hybrid Four-Step Method the error increases as the
fourth power of G. For the the method with vanished phase-lag and its first and
second derivatives developed in [39], the error increases as the second power of
G. For the new obtained method with vanished phase-lag and its first, second and
third derivatives developed in this paper, the error increases as the first power of G.
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So, for the numerical solution of the time independent radial Schrödinger equation
the New Proposed Method with Vanished Phase-Lag and its First, Second and Third
Derivatives is much more efficient, especially for large values of |G| = |Vc − E |.

6 Stability analysis

Applying the new obtained method to the scalar test equation:

p′′ = −z2 p. (25)

we obtain the following difference equation:

A2 (s, v) (pn+2 + pn−2) + A1 (s, v) (pn+1 + pn−1) + A0 (s, v) pn = 0 (26)

where

A2 (s, v) = 1, A1 = −2
T8

D2 v3 , A0 = −2
T9

D2 v3 (27)

where

T8 = 14 v6+12 v3 sin (v) + 4 sin (v) v5 − 12 cos (v) v4+231 v4 − 147 (cos (v))2 v4

−28 v4s2+42 s4 cos (v)+21 s4 (cos (v))2+102 v2s2+14 s4v2+7 (cos (v))2 v6

−42 (cos (v))3 s4−84 (cos (v))3 v2s2−84 cos (v) v3 sin (v)+119 v4s2 cos (v)

−256 v3 sin (v) s2+7 s4 (cos (v))2 v2−96 cos (v) v2s2−35 (cos (v))3 s2v4

−42 s4 (cos (v))2 v sin (v)+168 (cos (v))2 s2v sin (v)−14 s4 (cos (v))2 v3 sin (v)

+196 (cos (v))2 v3s2 sin (v) + 14 (cos (v))2 v5s2 sin (v) − 24 cos (v) v3s2 sin (v)

−108 cos (v) s2v sin (v) − 21 s4 + 42 s4v sin (v) − 14 (cos (v))2 v4s2

+56 cos (v) v5 sin (v)

+7 (cos (v))3 s4v2 − 49 s4 cos (v) v2 + 12 v sin (v) s2

−7 s4v3 sin (v) + 6 (cos (v))2 v2s2 + 7 v5s2 sin (v)

T9 = 548 cos (v) v5 sin (v) + 348 (cos (v))2 v2s2 + 96 (cos (v))3 v2s2

+14 sin (v) (cos (v))3 v7 − 12 s4v sin (v) − 2 s4 (cos (v))2 v2

+2 s4v3 sin (v) + 60 cos (v) v3 sin (v)

−20 (cos (v))3 s2v4 − 4 v5s2 sin (v) + 336 v3 sin (v) s2 − 168 sin (v) (cos (v))3 v3

+4 (cos (v))2 v7 sin (v) + 192 (cos (v))2 v3 sin (v) + 4 (cos (v))2 v5 sin (v)

+6 s4 − 249 v4 − 6 s4 (cos (v))2 + 12 v2s2 − 4 s4v2 − 331 (cos (v))2 v6 − 10 v6 cos (v)

+12 (cos (v))3 s4 + 108 (cos (v))3 v4 + 22 (cos (v))3 v6 − 42 (cos (v))4 v4

+70 (cos (v))4 v6 − 12 v3 sin (v) − 328 sin (v) v5 − 288 cos (v) v4 + 399 (cos (v))2 v4

−202 v4s2 + 2 v7 sin (v) − 12 s4 cos (v) + 56 cos (v) v5s2 sin (v)

−184 cos (v) v3s2 sin (v) − 24 cos (v) s2v sin (v)

−14 sin (v) (cos (v))3 s2v5 − 56 sin (v) (cos (v))3 s2v3

−336 sin (v) (cos (v))3 s2v
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+12 s4 (cos (v))2 v sin (v) + 216 (cos (v))2 s2v sin (v) + 4 s4 (cos (v))2 v3 sin (v)

−72 (cos (v))2 v3s2 sin (v) − 8 (cos (v))2 v5s2 sin (v)

−4 v4s2 cos (v) − 312 cos (v) v2s2

−56 v7 sin (v) cos (v) + 14 s4 cos (v) v2 − 2 (cos (v))3 s4v2

−140 sin (v) (cos (v))3 v5 + 214 (cos (v))2 v4s2 + 192 v6

D2 = 7 (cos (v))2 v3 − 147 (cos (v))2 v + 56 cos (v) v2 sin (v)

−84 sin (v) cos (v) − 12 cos (v) v + 12 sin (v) + 4 sin (v) v2 + 231 v + 14 v3

and s = z h.

Remark 2 The frequency of the scalar test Eq. (25), z, is not equal with the frequency
of the scalar test Eq. (5), w, i.e. z 	= w.

The corresponding characteristic equation is given by:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (28)

Definition 1 (see [16]) A symmetric 2k-step method with the characteristic equation
given by (7) is said to have an interval of periodicity

(
0, v2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (29)

where ζ(s) is a real function of z h and s = z h.

The stability analysis is shown on Flowchart mentioned in the Fig. 3.

Definition 2 (see [16]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 4 we present the s–v plane for the method developed in this paper. A
shadowed area denotes the s–v region where the method is stable, while a white area
denotes the region where the method is unstable.

Remark 3 For the solution of the Schrödinger equation the frequency of the phase
fitting is equal to the frequency of the scalar test equation. So, for this case of problems
it is necessary to observe the surroundings of the first diagonal of the s–v plane.

In the case that the frequency of the scalar test equation is equal with the frequency
of phase fitting, i.e. in the case that s = v (i.e. see the surroundings of the first diagonal
of the s–v plane), it is easy to see that the interval of periodicity of the new method
developed in Sect. 4 is equal to: (0, 36.83054610).

From the above analysis we have the following theorem:

1 Where S is a set of distinct points.
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Fig. 4 s–v plane of the the new developed method

Theorem 3 The method developed in Sect. 4 is of sixth algebraic order, has the phase-
lag and its first, second and third derivatives equal to zero and has an interval of
periodicity equals to: (0, 36.83054610).

7 Numerical results

We test the efficiency of the new proposed method using the numerical solution of the
the radial time-independent Schrödinger Eq. (1).

Since the new obtained method belongs to the category of the frequency dependent
methods, we must define the value of parameter w. This in order to be possible the
application of the new method to the one-dimensional Schrödinger equation. Based
on (1), the parameter w is given by (for the case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (30)

where V (r) is the potential and E is the energy.

7.1 Woods-Saxon potential

For the purpose of our numerical application, we use the well known Woods-Saxon
potential which can be written as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (31)
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The Woods-Saxon Potential

Fig. 5 The Woods-Saxon potential

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Fig. 5.
It is known that for some potentials, such as the Woods-Saxon potential, the defin-

ition of parameter w can be given also based on some critical points which have been
determined from the study of the appropriate potential (see for details [92]).

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1] and [68]):

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(32)

For example, in the point of the integration region r = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.

7.2 Radial Schrödinger equation: the resonance problem

For the purpose of this application, we consider the numerical solution of the radial
time independent Schrödinger Eq. (1) in the known case of the Woods-Saxon potential
(31). The numerical solution of this problem requires the approximation of the true
(infinite) interval of integration by a finite interval. For our numerical purposes, we
take the domain of integration as r ∈ [0, 15]. We consider Eq. (1) in a rather large
domain of energies, i.e., E ∈ [1, 1000].
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In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (33)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.

Fig. 6 Accuracy (Digits) for several values of CPU Time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy (Digits) is
less than 0

123



1438 J Math Chem (2013) 51:1418–1445

Thus, the solution of Eq. (1) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(34)

where δl is the phase shift that may be calculated from the formula

tan δl = q (r2) S (r1) − q (r1) S (r2)

q (r1) C (r1) − q (r2) C (r2)
(35)

Fig. 7 Accuracy (Digits) for several values of CPU Time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy (Digits) is
less than 0

123



J Math Chem (2013) 51:1418–1445 1439

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
q j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain q0. The values qi , i = 1(1)3 are obtained by using high order Runge–Kutta-
Nyström methods (see [99] and [100]). With these starting values, we evaluate at r2
of the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (36)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [17],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [17], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [17],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[22], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [69], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [21], which is indicated as Method MCR6

– The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

– The hybrid four-step method of sixth algebraic order with vanished phase-lag and
its first and second derivatives (obtained in [39]), which is indicated as Method
MPHD

– The hybrid four-step method of sixth algebraic order with vanished phase-lag and
its first, second and third derivatives (obtained in Sect. 4), which is indicated as
Method NMPH3D

The computed eigenenergies are compared with reference values.3 In Figs. 6 and 7,
we present the maximum absolute error Errmax = |log10 (Err) | where

Err = |Ecalculated − Eaccurate| (37)

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [21] with
small step size for the integration.
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of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

In this paper we have investigated a family of two-stage four-step sixth algebraic order
methods and the influencing of the procedure of vanishing phase-lag and its derivatives
on the efficiency of the above mentioned methods for the numerical solution of the
radial Schrödinger equation and related problems. As a result of the above, a two-
stage four-step sixth algebraic order methods with vanished phase-lag and its first and
second derivatives was produced. This new method is very efficient on any problem
with oscillating solutions or problems with solutions contain the functions cos and sin
or any combination of them.

From the results presented above, we can make the following remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [22], which is
indicated as Method MCR4. Both the above mentioned methods are more efficient
than the exponentially-fitted method of Raptis and Allison [69], which is indicated
as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[17], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [22], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [17], which is indicated as
Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao with minimal phase-lag
[21], which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[17], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [17], which is indicated as
Method QT10

4. The hybrid four-step two-stage sixth algebraic order method with vanished phase-
lag and its first and second derivatives (obtained in [39]), which is indicated as
Method MPHD is more efficient than all the methods mentioned above.

5. The hybrid four-step two-stage sixth algebraic order method with vanished phase-
lag and its first, second and third derivatives (obtained in Sect. 4), which is indicated
as Method NMPH3D is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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9 Appendix

9.1 New method with vanished phase-lag and its first, second and third derivative
(developed in Section 4)

LTEOptMeth = h8
[(

751

25200

(
d4

dx4 g (x)

)
p (x) + 751

37800

(
d3

dx3 g (x)

)
d

dx
p (x)

+ 751

18900
g (x) p (x)

d2

dx2 g (x) + 751

25200

(
d

dx
g (x)

)2
p (x)

)
G

751

302400

(
d6

dx6 g (x)

)
p (x) + 751

50400

(
d5
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